Equality Based Contraction of Semidefinite Programming Relaxations in Polynomial Optimization
نویسندگان
چکیده
The SDP (semidefinite programming) relaxation for general POPs (polynomial optimization problems), which was proposed as a method for computing global optimal solutions of POPs by Lasserre, has become an active research subject recently. We propose a new heuristic method exploiting the equality constraints in a given POP, and strengthen the SDP relaxation so as to achieve faster convergence to the global optimum of the POP. We can apply this method to both of the dense SDP relaxation which was originally proposed by Lasserre, and the sparse SDP relaxation which was later proposed by Kim, Kojima, Muramatsu and Waki. Especially, our heuristic method incorporated into the sparse SDP relaxation method has shown a promising performance in numerical experiments on large scale sparse POPs. Roughly speaking, we induce valid equality constraints from the original equality constraints of the POP, and then use them to convert the dense or sparse SDP relaxation into a new stronger SDP relaxation. Our method is enlightened by some strong theoretical results on the convergence of SDP relaxations for POPs with equality constraints provided by Lasserre , Parrilo and Laurent, but we place the main emphasis on the practical aspect to compute more accurate lower bounds of larger sparse POPs.
منابع مشابه
Second-Order Cone Relaxations for Binary Quadratic Polynomial Programs
Several types of relaxations for binary quadratic polynomial programs can be obtained using linear, secondorder cone, or semidefinite techniques. In this paper, we propose a general framework to construct conic relaxations for binary quadratic polynomial programs based on polynomial programming. Using our framework, we re-derive previous relaxation schemes and provide new ones. In particular, w...
متن کاملPositive polynomials on unbounded equality-constrained domains
Certificates of non-negativity are fundamental tools in optimization. A “certificate” is generally understood as an expression that makes the non-negativity of the function in question evident. Some classical certificates of non-negativity are Farkas Lemma and the S-lemma. The lift-and-project procedure can be seen as a certificate of non-negativity for affine functions over the union of two po...
متن کاملSums of Squares and Semidefinite Programming Relaxations for Polynomial Optimization Problems with Structured Sparsity
Unconstrained and inequality constrained sparse polynomial optimization problems (POPs) are considered. A correlative sparsity pattern graph is defined to find a certain sparse structure in the objective and constraint polynomials of a POP. Based on this graph, sets of supports for sums of squares (SOS) polynomials that lead to efficient SOS and semidefinite programming (SDP) relaxations are ob...
متن کاملA semidefinite relaxation scheme for quadratically constrained
Semidefinite optimization relaxations are among the widely used approaches to find global optimal or approximate solutions for many nonconvex problems. Here, we consider a specific quadratically constrained quadratic problem with an additional linear constraint. We prove that under certain conditions the semidefinite relaxation approach enables us to find a global optimal solution of the unde...
متن کاملConvergent Semidefinite Programming Relaxations for Global Bilevel Polynomial Optimization Problems
In this paper, we consider a bilevel polynomial optimization problem where the objective and the constraint functions of both the upper and the lower level problems are polynomials. We present methods for finding its global minimizers and global minimum using a sequence of semidefinite programming (SDP) relaxations and provide convergence results for the methods. Our scheme for problems with a ...
متن کامل